{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import xarray as xr\n", "from matplotlib import pyplot as plt\n", "%matplotlib inline\n", "plt.rcParams['figure.figsize'] = (8,5)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# notice that the time grid is 15th of each month!\n", "da_orig = xr.DataArray(np.linspace(0,11,num=12),\\\n", " coords=[pd.date_range('15/12/1999',\\\n", " periods=12, freq=pd.DateOffset(months=1))],\\\n", " dims='time')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Ingrid type time grid:\n", "year=2000\n", "ensostart = (year-1960)*12\n", "da_ensotime=xr.DataArray(np.linspace(0,119,num=120),\\\n", " coords=[np.linspace(ensostart+0.5,ensostart+119.5,num=120)],\\\n", " dims='time')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "da_dtI = xr.DataArray(np.linspace(0,119,num=120),\\\n", " coords=[pd.date_range('15/12/1999',\\\n", " periods=120, freq=pd.DateOffset(months=1))],\\\n", " dims='time')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "dag = da_dtI.groupby('time.month')\n", "dag.groups" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "da_clim = da_dtI.groupby('time.month').mean(dim='time')\n", "da_anom = da_dtI.groupby('time.month') - da_clim\n", "da_clim.plot()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "da_clim.rolling(month=3).mean()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "da_clim" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# want to do [month] 3 boxAverage\n", "print(da_clim.groupby_bins('month', 4).groups,'\\n')\n", "num_of_bins = da_clim.month.shape[0]/3\n", "da_3boxAverage = da_clim.groupby_bins('month', num_of_bins).mean()\n", "da_3boxAverage.groupby('month_bins').mean()\n", "# nope this is getting too messy" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "nmonths = 3\n", "da3 = da_clim.rolling(month=nmonths,center=True).mean()\n", "da3" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "da3f = da3[nmonths-1::nmonths]\n", "da3f['month'] = da3.month[nmonths-1::nmonths] -(nmonths-1)/2\n", "da3f" ] } ], "metadata": { "gist_info": { "gist_id": null, "gist_url": null }, "kernelspec": { "display_name": "Py3 pangeo", "language": "python", "name": "pangeo" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }