{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "
\n", "
Title
Regression selection
\n", "
Description
A linked streams example demonstrating how to the Selection1D stream to tap on a datapoint and reveal a regression plot. Highlights how custom interactivity can be used to reveal more information about a dataset.
\n", "
Backends
Bokeh
\n", "
Tags
streams, linked, tap selection
\n", "
\n", "
" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import holoviews as hv\n", "from holoviews.streams import Selection1D\n", "from scipy import stats\n", "hv.extension('bokeh')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%opts Scatter [color_index=2 tools=['tap', 'hover'] width=600] {+framewise} (marker='triangle' cmap='Set1' size=10)\n", "%%opts Overlay [toolbar='above' legend_position='right'] Curve (line_color='black') {+framewise}\n", "\n", "def gen_samples(N, corr=0.8):\n", " xx = np.array([-0.51, 51.2])\n", " yy = np.array([0.33, 51.6])\n", " means = [xx.mean(), yy.mean()] \n", " stds = [xx.std() / 3, yy.std() / 3]\n", " covs = [[stds[0]**2 , stds[0]*stds[1]*corr], \n", " [stds[0]*stds[1]*corr, stds[1]**2]] \n", "\n", " return np.random.multivariate_normal(means, covs, N)\n", "\n", "data = [('Week %d' % (i%10), np.random.rand(), chr(65+np.random.randint(5)), i) for i in range(100)]\n", "sample_data = hv.NdOverlay({i: hv.Points(gen_samples(np.random.randint(1000, 5000), r2))\n", " for _, r2, _, i in data})\n", "points = hv.Scatter(data, ['Date', 'r2'], ['block', 'id']).redim.range(r2=(0., 1))\n", "stream = Selection1D(source=points)\n", "empty = (hv.Points(np.random.rand(0, 2)) * hv.Curve(np.random.rand(0, 2))).relabel('No selection')\n", "\n", "def regression(index):\n", " if not index:\n", " return empty\n", " scatter = sample_data[index[0]]\n", " xs, ys = scatter['x'], scatter['y']\n", " slope, intercep, rval, pval, std = stats.linregress(xs, ys)\n", " xs = np.linspace(*scatter.range(0)+(2,))\n", " reg = slope*xs+intercep\n", " return (scatter * hv.Curve((xs, reg))).relabel('r2: %.3f' % slope)\n", "\n", "reg = hv.DynamicMap(regression, kdims=[], streams=[stream])\n", "\n", "average = hv.Curve(points, 'Date', 'r2').aggregate(function=np.mean)\n", "points * average + reg" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
" ] } ], "metadata": { "language_info": { "name": "python", "pygments_lexer": "ipython3" } }, "nbformat": 4, "nbformat_minor": 2 }