import numpy as np import holoviews as hv hv.extension('matplotlib') ls = np.linspace(0, 10, 400) x,y = np.meshgrid(ls, ls) img = hv.Image(np.sin(x)*np.cos(y)+0.1*np.random.rand(400,400), bounds=(-20,-20,20,20)).options(colorbar=True, xaxis=None, yaxis=None) hv.Layout([img.options(cmap=c).relabel(c) for c in ['gray','PiYG','flag','Set1']]) from math import ceil from holoviews.plotting.util import process_cmap colormaps = hv.plotting.list_cmaps() spacing = np.linspace(0, 1, 64)[np.newaxis] opts = dict(aspect=6, xaxis=None, yaxis=None, sublabel_format='') def filter_cmaps(category): return hv.plotting.util.list_cmaps(records=True,category=category,reverse=False) def cmap_examples(category,cols=4): cms = filter_cmaps(category) n = len(cms)*1.0 c=ceil(n/cols) if n>cols else cols bars = [hv.Image(spacing, ydensity=1, label="{0} ({1})".format(r.name,r.provider))\ .options(cmap=process_cmap(r.name,provider=r.provider), **opts) for r in cms] return hv.Layout(bars).options(vspace=0.1, hspace=0.1, transpose=(n>cols)).cols(c) cmap_examples('Uniform Sequential') cmap_examples('Diverging') cmap_examples('Rainbow') cmap_examples('Categorical') cmap_examples('Mono Sequential') cmap_examples('Other Sequential') cmap_examples('Miscellaneous') from holoviews.plotting import list_cmaps def format_list(l): print(' '.join(sorted([k for k in l]))) format_list(list_cmaps(provider='colorcet',reverse=True)) format_list(list_cmaps(name='20', source='d3', provider='matplotlib', reverse=False)) format_list(list_cmaps(category='Other Sequential', bg='dark')) format_list(list_cmaps(category='Other Sequential', bg='light')) format_list(list_cmaps(category='Diverging', bg='dark')) format_list(list_cmaps(category='Diverging', bg='light')) format_list(list_cmaps(category='Sequential', bg='a')) list_cmaps(category="Uniform Sequential", provider='bokeh', bg='light', records=True) hv.Layout([img.options(cmap=c, colorbar=False, sublabel_format='').relabel(c) for c in list_cmaps(category='Diverging', bg='light', reverse=False)])\ .options(vspace=0.1, hspace=0.1).cols(7)