import numpy as np import holoviews as hv hv.extension('bokeh', 'matplotlib') points = ( hv.Points(np.random.randn(50, 2) ) * hv.Points(np.random.randn(50, 2) + 1 ) * hv.Points(np.random.randn(50, 2) * 0.5) ) color_cycle = hv.Cycle(['red', 'green', 'blue']) points + points.options({'Points': {'color': color_cycle, 'size': 5}}) def format_list(l): print(' '.join(sorted([k for k in l if not k.endswith('_r')]))) format_list(hv.Cycle.default_cycles.keys()) xs = np.linspace(0, np.pi*2) curves = hv.Overlay([hv.Curve(np.sin(xs+p)) for p in np.linspace(0, np.pi, 10)]) curves.options({'Curve': {'color': hv.Cycle('Category20'), 'width': 600}}) color = hv.Cycle(['#30a2da', '#fc4f30', '#e5ae38']) markers = hv.Cycle(['x', '^', '+']) sizes = hv.Cycle([10, 5]) points.options({'Points': {'marker': markers, 'size': sizes}}) format_list(hv.Palette.colormaps.keys()) ellipses = hv.Overlay([hv.Ellipse(0, 0, s) for s in range(6)]) ellipses.relabel('Palette').options({'Ellipse': dict(color=hv.Palette('Spectral'), line_width=5)}) +\ ellipses.relabel('Cycle' ).options({'Ellipse': dict(color=hv.Cycle( 'Spectral'), line_width=5)}) format_list(hv.plotting.list_cmaps()) ls = np.linspace(0, 10, 400) xx, yy = np.meshgrid(ls, ls) bounds=(-1,-1,1,1) # Coordinate system: (left, bottom, top, right) img = hv.Image(np.sin(xx)*np.cos(yy), bounds=bounds).options(colorbar=True, width=400) img.options(cmap='PiYG') + img.options(cmap='PiYG_r') img.options(cmap=['#0000ff', '#8888ff', '#ffffff', '#ff8888', '#ff0000'], colorbar=True, width=400) img.options(cmap='PiYG', color_levels=5) + img.options(cmap='PiYG', color_levels=11) clipping = {'min': 'red', 'max': 'green', 'NaN': 'gray'} opts = dict(cmap='Blues', colorbar=True, width=300, height=230, axiswise=True) arr = np.sin(xx)*np.cos(yy) arr[:190, :127] = np.NaN original = hv.Image(arr, bounds=bounds).options(**opts) colored = original.options(clipping_colors=clipping) clipped = colored.redim.range(z=(0, 0.9)) original + colored + clipped polygons = hv.Polygons([{('x', 'y'): hv.Ellipse(0, 0, (i, i)).array(), 'z': i} for i in range(1, 10)[::-1]], vdims='z') polygons.options(color_index='z', colorbar=True, width=380) categorical_points = hv.Points((np.random.rand(100), np.random.rand(100), np.random.choice(list('ABCD'), 100)), vdims='Category') categorical_points.sort('Category').options(color_index='Category', cmap='Category20', size=5) explicit_mapping = {'A': 'blue', 'B': 'red', 'C': 'green', 'D': 'purple'} categorical_points.sort('Category').options(color_index='Category', cmap=explicit_mapping, size=5)