{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "
\n", "
Title
Path Element
\n", "
Dependencies
Bokeh
\n", "
Backends
Bokeh
Matplotlib
\n", "
\n", "
" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import holoviews as hv\n", "hv.extension('bokeh')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A ``Path`` object is actually a collection of lines, unlike ``Curve`` where the y-axis is the dependent variable, a ``Path`` consists of lines connecting arbitrary points in two-dimensional space. The individual subpaths should be supplied as a list and will be stored as NumPy arrays, DataFrames or dictionaries for each column, i.e. any of the formats accepted by columnar data formats.\n", "\n", "In this example we will create a Lissajous curve, which describe complex harmonic motion:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%opts Path (color='black' line_width=4)\n", "\n", "lin = np.linspace(0, np.pi*2, 200)\n", "\n", "def lissajous(t, a, b, delta):\n", " return (np.sin(a * t + delta), np.sin(b * t), t)\n", "\n", "hv.Path([lissajous(lin, 3, 5, np.pi/2)])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "If you looked carefully the ``lissajous`` function actually returns three columns, respectively for the x, y columns and a third column describing the point in time. By declaring a value dimension for that third column we can also color the Path by time. Since the value is cyclical we will also use a cyclic colormap (``'hsv'``) to represent this variable:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%opts Path [color_index='time'] (line_width=4 cmap='hsv')\n", "hv.Path([lissajous(lin, 3, 5, np.pi/2)], vdims='time')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If we do not provide a ``color_index`` overlaid ``Path`` elements will cycle colors just like other elements do unlike ``Curve`` a single ``Path`` element can contain multiple lines that are disconnected from each other. A ``Path`` can therefore often useful to draw arbitrary annotations on top of an existing plot.\n", "\n", "A ``Path`` Element accepts multiple formats for specifying the paths, the simplest of which is passing a list of ``Nx2`` arrays of the x- and y-coordinates, alternative we can pass lists of coordinates. In this example we will create some coordinates representing rectangles and ellipses annotating an ``RGB`` image:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%opts Path (line_width=4)\n", "angle = np.linspace(0, 2*np.pi, 100)\n", "baby = list(zip(0.15*np.sin(angle), 0.2*np.cos(angle)-0.2))\n", "\n", "adultR = [(0.25, 0.45), (0.35,0.35), (0.25, 0.25), (0.15, 0.35), (0.25, 0.45)]\n", "adultL = [(-0.3, 0.4), (-0.3, 0.3), (-0.2, 0.3), (-0.2, 0.4),(-0.3, 0.4)]\n", "scene = hv.RGB.load_image('../assets/penguins.png')\n", "\n", "scene * hv.Path([adultL, adultR, baby]) * hv.Path([baby])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "A ``Path`` can also be used as a means to display a number of lines with the same sampling along the x-axis at once. If we initialize the ``Path`` with a tuple of x-coordinates and stacked y-coordinates, we can quickly view a number of lines at once. Here we will generate a number of random traces each slightly offset along the y-axis:" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%%opts Path [width=600]\n", "N, NLINES = 100, 10\n", "hv.Path((np.arange(N), np.random.rand(N, NLINES) + np.arange(NLINES)[np.newaxis, :])) *\\\n", "hv.Path((np.arange(N), np.random.rand(N, NLINES) + np.arange(NLINES)[np.newaxis, :]))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For full documentation and the available style and plot options, use ``hv.help(hv.Path).``" ] } ], "metadata": { "language_info": { "name": "python", "pygments_lexer": "ipython3" } }, "nbformat": 4, "nbformat_minor": 2 }